[Linear Algebra] 12. Change of basis

2022. 3. 12. 13:26Mathematics/Linear Algebra

Standard way to describe vector is using coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$. each coordinate is scalar to stretches or squishes basis vectors, normally $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ which are standard basis vectors.

 

In this section, think about the idea of using different set of basis vectors.

 

Let's define new basis vectors $\mathbf{\vec{b_1}}$ and $\mathbf{\vec{b_2}}$ which are $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ described by standard perspective. But in new perspective, those vectors have coordinates $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 

Even though we are looking at same vectors, we use different vectors to describe them. Basis vectors are nothing more than tool to describe vectors.


Translate between coordinates systems

new language $\rightarrow$ standard language
If new perspective describes a vector with coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$, this vector is $x \mathbf{\vec{b_1}} + y \mathbf{\vec{b_2}}$. Because $\mathbf{\vec{b_1}}$ is $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\mathbf{\vec{b_2}}$ is $\begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$ in standard perspective, this vector is $(xv_1 + yw_1)\mathbf{\hat{i}} + (xv_2 + yw_2)\mathbf{\hat{j}}$. This process is matrix-vector multiplication:

$$
\begin{bmatrix}
v_1 & w_1 \\
v_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
x \\ y
\end{bmatrix}
$$

Geometrically, this matrix translates standard grid into new grid.
$\longleftrightarrow$
Numerically, it translates a vector in new language to standard language.

 

standard language $\rightarrow$ new language
In this case, use inverse matrix:

$$
\begin{bmatrix}
v_1 & w_1 \\
v_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
x_{new} \\ y_{new}
\end{bmatrix}
=
\begin{bmatrix}
x_{standard} \\ y_{standard}
\end{bmatrix}
\longleftrightarrow
\begin{bmatrix}
x_{new} \\ y_{new}
\end{bmatrix}
=
\begin{bmatrix}
v_1 & w_1 \\
v_2 & w_2 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
x_{standard} \\ y_{standard}
\end{bmatrix}
$$

 

This is a way to translate the description of individual vectors back and forth between different languages.

Representing same transformation in both standard and new language

For example, $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ represents $90^{\circ}$ rotation of space. It means that where $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ land, not $\mathbf{\vec{b_1}}$ and $\mathbf{\vec{b_2}}$ land.

 

Common way to represent same transformation in new language: 0). start with vector written in new language. 1). translate it into standard language, 2). apply the transformation matrix, 3). apply inverse change of basis matrix to get into new language:

$$
\begin{bmatrix}
v_1 & w_1 \\
v_2 & w_2 \\
\end{bmatrix}^{-1}
\begin{bmatrix}
0 & 1 \\
-1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
v_1 & w_1 \\
v_2 & w_2 \\
\end{bmatrix}
\begin{bmatrix}
x_{new} \\ y_{new}
\end{bmatrix}
$$

 

In general, expression like $V^{-1}AV$ suggests a mathematical empathy. 1). $A$ represents some transformation, and 2). $V^{-1}$ and $V$ represent the shift of perspective, And 3). $V^{-1}AV$ represents that same transformation in different language.