전체 글(108)
-
[Linear Algebra] 12. Change of basis
Standard way to describe vector is using coordinates $\begin{bmatrix} x \\ y \end{bmatrix}$. each coordinate is scalar to stretches or squishes basis vectors, normally $\mathbf{\hat{i}}$ and $\mathbf{\hat{j}}$ which are standard basis vectors. In this section, think about the idea of using different set of basis vectors. Let's define new basis vectors $\mathbf{\vec{b_1}}$ and $\mathbf{\vec{b_2}}..
2022.03.12 -
[Linear Algebra] 11. Cramer's rule, explained geometrically
In this section, let's view "Cramer's rule" by geometrically. Cramer's rule is not the best way to compute solutions of systems of linear equations. Gaussian elimination will always be faster. But understanding Cramer's rule geometrically will help consolidate ideas of relation between determinant and system of linear equations. Example In this setup, we define system of linear equations with 1)..
2022.03.12 -
[Linear Algebra] 10. Cross products and duality
3-D cross product formula: $$ \mathbf{\vec{v}} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} ; \mathbf{\vec{w}} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} $$ $$ \mathbf{\vec{v}} \times \mathbf{\vec{w}} = \det \begin{pmatrix} \begin{bmatrix} \mathbf{\hat{i}} & v_1 & w_1 \\ \mathbf{\hat{j}} & v_2 & w_2 \\ \mathbf{\hat{k}} & v_3 & w_3 \\ \end{bmatrix} \end{pmatrix} = \mathbf{\hat{i}}(v_2..
2022.03.12 -
[Linear Algebra] 9. Cross products via transformations
2 dimension The cross product of $\mathbf{\vec{v}}$ and $\mathbf{\vec{w}}$, written $\mathbf{\vec{v}} \times \mathbf{\vec{w}}$, is the area of the parallelogram defined by $\mathbf{\vec{v}}$ and $\mathbf{\vec{w}}$. Cross product also considers orientation. 1). If $\mathbf{\vec{v}}$ is on the right of $\mathbf{\vec{w}}$, then $\mathbf{\vec{v}} \times \mathbf{\vec{w}}$ is positive and equal to the..
2022.03.12 -
[Linear Algebra] 8. Dot products and duality
Standard way Numerically, if $\mathbf{\vec{v}}$ and $\mathbf{\vec{w}}$ are in the same dimension, dot product is 1). pairing all of the coordinates, 2). multiplying those pairs together, and 3). adding the results: $$ \mathbf{\vec{v}} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \ \mathbf{\vec{w}} = \begin{bmatrix} d \\ e \\ f \end{bmatrix} $$ $$ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \cdot \b..
2022.03.12 -
[Linear Algebra] 7. Nonsquare matrices as transformations between dimensions
In this section, let's think about non-square matrices geometrically. Non-square matrics are transformations that transform particular dimensional vectors into other dimensional vectors. 2-D (plane) to 3-D (space) If there is a transformation that takes $\mathbf{\hat{i}}$ to the coordinate $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ and $\mathbf{\hat{j}}$ to the coordinate $\begin{bmatrix} d \\ ..
2022.03.12